EBV finds a polycomb-mediated, epigenetic solution to the problem of oncogenic stress responses triggered by infection
نویسنده
چکیده
Viruses that establish a persistent infection, involving intracellular latency, commonly stimulate cellular DNA synthesis and sometimes cell division early after infection. However, most cells of metazoans have evolved "fail-safe" responses that normally monitor unscheduled DNA synthesis and prevent cell proliferation when, for instance, cell proto-oncogenes are "activated" by mutation, amplification, or chromosomal rearrangements. These cell intrinsic defense mechanisms that reduce the risk of neoplasia and cancer are collectively called oncogenic stress responses (OSRs). Mechanisms include the activation of tumor suppressor genes and the so-called DNA damage response that together trigger pathways leading to cell cycle arrest (e.g., cell senescence) or complete elimination of cells (e.g., apoptosis). It is not surprising that viruses that can induce cellular DNA synthesis and cell division have the capacity to trigger OSR, nor is it surprising that these viruses have evolved countermeasures for inactivating or bypassing OSR. The main focus of this review is how the human tumor-associated Epstein-Barr virus manipulates the host polycomb group protein system to control - by epigenetic repression of transcription - key components of the OSR during the transformation of normal human B cells into permanent cell lines.
منابع مشابه
فراوانی ویروسهای EBV و HPV در کارسینوم نازوفارنکس به روش هیبریداسیون درجا
Nasopharyngeal carcinoma, particulary tumors endemic to the Far East, commonly harbors Epstein-Barr virus. The detection of nuclear antigen associated with EBV and viral DNA in NPC cells have revealed that EBV can infect epithelial cells and is associated with transformation. Human papilloma virus is an epitheliotrophic oncogenic virus that has been detected in a variety of head and neck tu...
متن کاملEpigenetic silencing of tumor suppressor genes during in vitro Epstein-Barr virus infection.
DNA-methylation at CpG islands is one of the prevalent epigenetic alterations regulating gene-expression patterns in mammalian cells. Hypo- or hypermethylation-mediated oncogene activation, or tumor suppressor gene (TSG) silencing mechanisms, widely contribute to the development of multiple human cancers. Furthermore, oncogenic viruses, including Epstein-Barr virus (EBV)-associated human cancer...
متن کاملBIM promoter directly targeted by EBNA3C in polycomb-mediated repression by EBV
Detailed analyses of the chromatin around the BIM promoter has revealed that latent Epstein-Barr virus (EBV) triggers the recruitment of polycomb repressive complex 2 (PRC2) core subunits and the trimethylation of histone H3 lysine 27 (H3K27me3) at this locus. The recruitment is absolutely dependent on nuclear proteins EBNA3A and EBNA3C; what is more, epitope-tagged EBNA3C could be shown bound ...
متن کاملEpigenetic Modifications of Host Genes Induced by Bacterial Infection
Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...
متن کاملPriming of protective T cell responses against virus-induced tumors in mice with human immune system components
Many pathogens that cause human disease infect only humans. To identify the mechanisms of immune protection against these pathogens and also to evaluate promising vaccine candidates, a small animal model would be desirable. We demonstrate that primary T cell responses in mice with reconstituted human immune system components control infection with the oncogenic and persistent Epstein-Barr virus...
متن کامل